2411
8
Совершенно потрясающее устройство – водяной компьютер. Гидравлический интегратор Лукьянова — первая в мире вычислительная машина для решения дифференциальных уравнений в частных производных — на протяжении полувека был единственным средством вычислений, связанных с широким кругом задач математической физики. В 1936 году он создал вычислительную машину, все математические операции в которой выполняла текущая вода. Слышали ли вы о таком?
Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых – одномерных задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций. В последствии интегратор был модифицирован для решения трехмерных задач.
После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.
Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора — наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ — с большими сложностями. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.
После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.
Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора — наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ — с большими сложностями. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.
×
И еще немного для тех, кому интересны подробности.
Создание гидроинтегратора продиктовано сложной инженерной задачей, с которой молодой специалист В. Лукьянов столкнулся в первый же год работы.
После окончания Московского института инженеров путей сообщения (МИИТ) Лукьянов был направлен на постройку железных дорог Троицк-Орск и Карталы-Магнитная (ныне Магнитогорск).
В 20-30-е годы строительство железных дорог велось медленно. Основными рабочими инструментами были лопата, кирка и тачка, а земляные работы и бетонирование производились только летом. Но качество работ все равно оставалось невысоким, появлялись трещины — бич железобетонных конструкций.
Лукьянов заинтересовался причинами образования трещин в бетоне. Его предположение об их температурном происхождении сталкивается со скептическим отношением специалистов. Молодой инженер начинает исследования температурных режимов в бетонных кладках в зависимости от состава бетона, используемого цемента, технологии проведения работ и внешних условий. Распределение тепловых потоков описывается сложными соотношениями между температурой и меняющимися со временем свойствами бетона. Эти соотношения выражаются так называемыми уравнениями в частных производных. Однако существовавшие в то время (1928 год) методы расчетов не смогли дать быстрого и точного их решения.
В поисках путей решения проблемы Лукьянов обращается к трудам математиков и инженеров. Верное направление он находит в трудах выдающихся российских ученых — академиков А. Н. Крылова, Н. Н. Павловского и М. В. Кирпичева.
Инженер-кораблестроитель, механик, физик и математик академик Алексей Николаевич Крылов (1863-1945) в конце 1910 года построил уникальную механическую аналоговую вычислительную машину — дифференциальный интегратор для решения обыкновенных дифференциальных уравнений 4-го порядка.
Академик Николай Николаевич Павловский (1884-1937) занимался вопросами гидравлики. В 1918 году доказал возможность замены одного физического процесса другим, если они описываются одним и тем же уравнением (принцип аналогии при моделировании).
Создание гидроинтегратора продиктовано сложной инженерной задачей, с которой молодой специалист В. Лукьянов столкнулся в первый же год работы.
После окончания Московского института инженеров путей сообщения (МИИТ) Лукьянов был направлен на постройку железных дорог Троицк-Орск и Карталы-Магнитная (ныне Магнитогорск).
В 20-30-е годы строительство железных дорог велось медленно. Основными рабочими инструментами были лопата, кирка и тачка, а земляные работы и бетонирование производились только летом. Но качество работ все равно оставалось невысоким, появлялись трещины — бич железобетонных конструкций.
Лукьянов заинтересовался причинами образования трещин в бетоне. Его предположение об их температурном происхождении сталкивается со скептическим отношением специалистов. Молодой инженер начинает исследования температурных режимов в бетонных кладках в зависимости от состава бетона, используемого цемента, технологии проведения работ и внешних условий. Распределение тепловых потоков описывается сложными соотношениями между температурой и меняющимися со временем свойствами бетона. Эти соотношения выражаются так называемыми уравнениями в частных производных. Однако существовавшие в то время (1928 год) методы расчетов не смогли дать быстрого и точного их решения.
В поисках путей решения проблемы Лукьянов обращается к трудам математиков и инженеров. Верное направление он находит в трудах выдающихся российских ученых — академиков А. Н. Крылова, Н. Н. Павловского и М. В. Кирпичева.
Инженер-кораблестроитель, механик, физик и математик академик Алексей Николаевич Крылов (1863-1945) в конце 1910 года построил уникальную механическую аналоговую вычислительную машину — дифференциальный интегратор для решения обыкновенных дифференциальных уравнений 4-го порядка.
Академик Николай Николаевич Павловский (1884-1937) занимался вопросами гидравлики. В 1918 году доказал возможность замены одного физического процесса другим, если они описываются одним и тем же уравнением (принцип аналогии при моделировании).
Академик Михаил Викторович Кирпичев (1879-1955) — специалист в области теплотехники, разработал теорию моделирования процессов в промышленных установках — метод локального теплового моделирования. Метод позволял в лабораторных условиях воспроизводить явления, наблюдаемые на больших промышленных объектах.
Лукьянов сумел обобщить идеи великих ученых: модель — вот высшая степень наглядности математической истины. Проведя исследования и убедившись, что законы течения воды и распространения тепла во многом сходны, он сделал вывод — вода может выступать в роли модели теплового процесса. В 1934 году Лукьянов предложил принципиально новый способ механизации расчетов неустановившихся процессов — метод гидравлических аналогий и спустя год создал тепловую гидромодель для демонстрации метода. Это примитивное устройство, сделанное из кровельного железа, жести и стеклянных трубок, успешно разрешило задачу исследования температурных режимов бетона.
Главным его узлом стали вертикальные основные сосуды определенной емкости, соединенные между собой трубками с изменяемыми гидравлическими сопротивлениями и подключенные к подвижным сосудам. Поднимая и опуская их, меняли напор воды в основных сосудах. Пуск или остановка процесса расчета производились кранами с общим управлением.
В 1936 году заработала первая в мире вычислительная машина для решения уравнений в частных производных — гидравлический интегратор Лукьянова.
Для решения задачи на гидроинтеграторе необходимо было:
1) составить расчетную схему исследуемого процесса;
2) на основании этой схемы произвести соединение сосудов, определить и подобрать величины гидравлических сопротивлений трубок;
3) рассчитать начальные значения искомой величины;
4) начертить график изменения внешних условий моделируемого процесса.
Лукьянов сумел обобщить идеи великих ученых: модель — вот высшая степень наглядности математической истины. Проведя исследования и убедившись, что законы течения воды и распространения тепла во многом сходны, он сделал вывод — вода может выступать в роли модели теплового процесса. В 1934 году Лукьянов предложил принципиально новый способ механизации расчетов неустановившихся процессов — метод гидравлических аналогий и спустя год создал тепловую гидромодель для демонстрации метода. Это примитивное устройство, сделанное из кровельного железа, жести и стеклянных трубок, успешно разрешило задачу исследования температурных режимов бетона.
Главным его узлом стали вертикальные основные сосуды определенной емкости, соединенные между собой трубками с изменяемыми гидравлическими сопротивлениями и подключенные к подвижным сосудам. Поднимая и опуская их, меняли напор воды в основных сосудах. Пуск или остановка процесса расчета производились кранами с общим управлением.
В 1936 году заработала первая в мире вычислительная машина для решения уравнений в частных производных — гидравлический интегратор Лукьянова.
Для решения задачи на гидроинтеграторе необходимо было:
1) составить расчетную схему исследуемого процесса;
2) на основании этой схемы произвести соединение сосудов, определить и подобрать величины гидравлических сопротивлений трубок;
3) рассчитать начальные значения искомой величины;
4) начертить график изменения внешних условий моделируемого процесса.
После этого задавали начальные значения: основные и подвижные сосуды при закрытых кранах наполняли водой до рассчитанных уровней и отмечали их на миллиметровой бумаге, прикрепленной за пьезометрами (измерительными трубками) — получалась своеобразная кривая. Затем все краны одновременно открывали, и исследователь менял высоту подвижных сосудов в соответствии с графиком изменения внешних условий моделируемого процесса. При этом напор воды в основных сосудах менялся по тому же закону, что и температура. Уровни жидкости в пьезометрах менялись, в нужные моменты времени краны закрывали, останавливая процесс, и на миллиметровой бумаге отмечали новые положения уровней. По этим отметкам строили график, который и был решением задачи.
Возможности гидроинтегратора оказались необычайно широки и перспективны. В 1938 году В. С. Лукьяновым была основана лаборатория гидравлических аналогий, которая вскоре превратилась в базовую организацию для внедрения метода в народное хозяйство страны. Руководителем этой лаборатории он оставался в течение сорока лет.
Главным условием широкого распространения метода гидравлической аналогии стало совершенствование гидроинтегратора. Создание конструкции, удобной в практическом применении, позволило решать задачи различных типов — одномерные, двухмерные и трехмерные. Например, течение воды в прямолинейных границах — одномерный поток. Двумерное движение наблюдается в районах крупных излучин рек, вблизи островов и полуостровов, а грунтовые воды растекаются в трех измерениях.
Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых — одномерных — задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций.
В 1949 году постановлением Совета Министров СССР в Москве создан специальный институт "НИИСЧЕТМАШ", которому были получены отбор и подготовка к серийному производству новых образцов вычислительной техники. Одной из первых таких машин стал гидроинтегратор. За шесть лет в институте разработана новая его конструкция из стандартных унифицированных блоков, и на Рязанском заводе счетно-аналитических машин начался их серийный выпуск с заводской маркой ИГЛ (интегратор гидравлический системы Лукьянова). Ранее единичные гидравлические интеграторы строились на Московском заводе счетно-аналитических машин (САМ). В процессе производства секции были модифицированы для решения трехмерных задач.
Возможности гидроинтегратора оказались необычайно широки и перспективны. В 1938 году В. С. Лукьяновым была основана лаборатория гидравлических аналогий, которая вскоре превратилась в базовую организацию для внедрения метода в народное хозяйство страны. Руководителем этой лаборатории он оставался в течение сорока лет.
Главным условием широкого распространения метода гидравлической аналогии стало совершенствование гидроинтегратора. Создание конструкции, удобной в практическом применении, позволило решать задачи различных типов — одномерные, двухмерные и трехмерные. Например, течение воды в прямолинейных границах — одномерный поток. Двумерное движение наблюдается в районах крупных излучин рек, вблизи островов и полуостровов, а грунтовые воды растекаются в трех измерениях.
Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых — одномерных — задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций.
В 1949 году постановлением Совета Министров СССР в Москве создан специальный институт "НИИСЧЕТМАШ", которому были получены отбор и подготовка к серийному производству новых образцов вычислительной техники. Одной из первых таких машин стал гидроинтегратор. За шесть лет в институте разработана новая его конструкция из стандартных унифицированных блоков, и на Рязанском заводе счетно-аналитических машин начался их серийный выпуск с заводской маркой ИГЛ (интегратор гидравлический системы Лукьянова). Ранее единичные гидравлические интеграторы строились на Московском заводе счетно-аналитических машин (САМ). В процессе производства секции были модифицированы для решения трехмерных задач.
В 1951 году за создание семейства гидроинтеграторов В. С. Лукьянову присуждена Государственная премия.
После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.
Особенно наглядно проявилась эффективность метода гидравлических аналогий при изготовлении железобетонных блоков первой в мире гидроэлектростанции из сборного железобетона — Саратовской ГЭС им. Ленинского комсомола (1956-1970). Требовалось разработать технологию изготовления около трех тысяч огромных блоков весом до 200 тонн. Блоки должны были быстро вызревать без трещин на поточной линии во все времена года и сразу устанавливаться на место. Очень сложные расчеты температурного режима с учетом непрерывного изменения свойств твердеющего бетона и условий электропрогрева произвели своевременно и в нужном объеме только благодаря гидроинтеграторам Лукьянова. Теоретические расчеты в сочетании с испытаниями на опытном полигоне и на производстве позволили отработать технологию изготовления блоков безукоризненного качества.
После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.
Особенно наглядно проявилась эффективность метода гидравлических аналогий при изготовлении железобетонных блоков первой в мире гидроэлектростанции из сборного железобетона — Саратовской ГЭС им. Ленинского комсомола (1956-1970). Требовалось разработать технологию изготовления около трех тысяч огромных блоков весом до 200 тонн. Блоки должны были быстро вызревать без трещин на поточной линии во все времена года и сразу устанавливаться на место. Очень сложные расчеты температурного режима с учетом непрерывного изменения свойств твердеющего бетона и условий электропрогрева произвели своевременно и в нужном объеме только благодаря гидроинтеграторам Лукьянова. Теоретические расчеты в сочетании с испытаниями на опытном полигоне и на производстве позволили отработать технологию изготовления блоков безукоризненного качества.
Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора — наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ — с большими сложностями. Более того, предварительное применение метода гидравлических аналогий помогало поставить задачу, подсказать путь программирования ЭВМ и даже проконтролировать ее во избежание грубых ошибок. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.
Два гидроинтегратора Лукьянова представлены в коллекции аналоговых машин Политехнического музея в Москве. Это редкие экспонаты, имеющие большую историческую ценность, памятники науки и техники. Оригинальные вычислительные устройства вызывают неизменный интерес посетителей и входят в число самых ценных экспонатов отдела вычислительной техники.
Два гидроинтегратора Лукьянова представлены в коллекции аналоговых машин Политехнического музея в Москве. Это редкие экспонаты, имеющие большую историческую ценность, памятники науки и техники. Оригинальные вычислительные устройства вызывают неизменный интерес посетителей и входят в число самых ценных экспонатов отдела вычислительной техники.
1-ИГЛ-1-3.
Интегратор гидравлический.
Завод счётно-аналитических машин.
"САМ", Рязань, 1974
Интегратор гидравлический.
Завод счётно-аналитических машин.
"САМ", Рязань, 1974
Источник:
Еще крутые истории!
- Как ChatGPT избавил пользователя от пятилетней боли в челюсти за одну минуту
- Женщину осудили за убийство мужа после того, как попугай повторил "последние слова" жертвы
реклама
Это, минимум, красиво. Но действительно ли он так хорош?
Конечно нет, ни зубчатые счётные машины, ни на гидравлике и близко не могут сравниться с потенциалом электронных микросхем. Это стало понятно почти сразу же. Да, по началу казалось, что стоимость даже пару килобайт ферритовой ОЗУ - это гвоздь в крышку гроба ЭВМ.
Но такой вывод могли сделать исключительно люди, далёкие от учёных мужей. Им сразу стало понятно, скорость. Скорость и малые затраты на перемещение ед. заряда. Если у гидравлической системы, на смачивание поверхностей даже супер-классного материала уйдут микро-милли литры, то для транзисторов, чтобы переместить заряд, уйдёт несколько микро-милли(на тот момент) Кулона.
Далее, при совершенствовании, вполне можно добиться(и добились!) затрачивать ничтожно малую энергию, на выполнении внутрипроцессорных операций.
В итоге, даже самая совершенная механическая счётная машина. С супер-смазкой из Рога Единорога будет иметь КПД куда более низкий, чем ЭВМ.
Даже самая совершенная Гидравлическая счётная машина, с трубками из Нано волокна, вытянутого из усов космической Тихоходки? будет иметь КПД смешной. Ввиду смачивания, задержки во времени (давление возрастает не мгновенно. И даже не быстро. У эл-ства скорость сопоставимо со скоростью света, в зависимости от среды передачи)
И это мы ещё не подошли ко второй проблематике. Чтоб сделать АЛУ на 32 Регистра, соорудив из нано-трубочек. Размер трубочек (их наружных диаметр?) сделать, хотя-бы, 100 нанометров - задача не из лёгких. Нет ни материала, ни инструментов. Палочку сделать можем, а вот дырочку в палочке нет.
Вот и имеем, АЛУ ЭВМ умещается на головке спички, Алу из Гидравлики - Ящик? Алу из Зубчатых колёс -пол Ящика для стола? Алу из призм и источников света - пол стола?
Это было понятно сразу же, когда от ламповых Диодов перешли к полупроводникам. И не прогадали.
P.S. Что же делать? Как быть? Всё, на что мы способны - это полупроводники?
Ну... Не всё так однозначно. Мы только-только начали копать в сторону сверх малых частиц и составляющих в Физике... Да, речь о квантовой физике. Хоть о ней известно около 100 лет, только последние 25-40 лет у нас стали появляться хоть какой-то инструментарий, чтобы ещё вменяемо изучать. Всё ещё впереди
Второй вариант : Сложнейшие Алу и Вычислительные Машины, основанные на биологических процессах. Работа основывается на биологических процессах внутри клеток и между ними.
И не только Клеток, но и Вирусов, Грибков.
К примеру, есть чёткая схема, как вирус к примеру реплицирует своё РНК\ДНК, в теле клетки-носителя. Это можно использовать.
Чёткая схема рецепторов, с помощью которых клетки взаимодействуют друг-с другом, и чужеродными телами, окружающей средой. Это можно использовать.
К слову, я не биохимик, могу не верно подбирать слова... Но смысл в том, что биологические процессы настолько разнообразны, что можно делать отличнейшие АЛУ, использовав их потенциал. Особенно хорошо поддаются паралелизму, ведь половина процессов могут проходить почти одинаково (на начальной стадии) и только под конец различаться. Это очень сильно поможет в будущем вычислительных машин.
И нет, они не будут выигрывать в "скорости" при выполнении простейших вычислений. Но они могут дать фору там, где сложнейшие вычисления требуют "разбивки" на составляющие. К слову, современные ЭВМ не умеют, по сути, ничего кроме операции сложения. АЛУ состоит из сумматоров и полу-сумматоров. Вычитать они не умеют. Это люди, разрабатывая ЭВМ, с помощью математики, сделать результат вычитания - процессом суммирования. Кого заинтересовало, лучше об этом почитать (погуглить)
А биохимия может вычитать. Может замещать. Биопроцессы, происходящие в клетках - поистине сложнейшая математика.
Ну и квантовый компуктар. Но он будет ооочень не скоро. Не понятно как поддерживать температуру около абсолютного нуля, когда у тебя электронная установка, выделяющая тепло.
Так что нет, никакой Гидравлики, никаких зубчатых колёс.
Играйте в Игры)
А 50 лет назад ВС подобного типа использовались вообще повсеместно в данных областях, т.к. их электронные собратья были довольно пожароопасные.
Так что вполне себе годное изобретение для своего времени, причем в мировых масштабах.
Как и паровоз, было вытеснено более новыми образцами техники, но при этом оставшись в своей узкой нише.
Точно так же, как ламповые и механические ЭВМ в свое время заменили абак, а затем были вытеснены транзисторной техникой.
Были ли ламповые/релейные компьютеры "революционным изобретением"? Для своего времени - безусловно.
Причем ламповые ЭВМ сейчас не используются вообще нигде, а гидропневматика работает до сих пор, пусть и "кое-где" и "иногда".